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Abstract—Traffic image recognition is one of the most im-
portant phases in the field of autonomous driving, including the
classification of real-time periods and the detection of pedestrians,
vehicles, etc. on the road. In this paper, we proposed an end-to-
end classifcation and object detection method based on Swin
Transformer with improved cascade RoI heads. Our method
focuses on the scale problem from language to vision field in
traditional Transformer model and the mismatch problem of
bounding box regression in previous object detection methods
(e.g. Faster R-CNN). A modified Swin Transformer architecture
with multiple RoI heads is adopted in the proposed model to
perform classification and object detection, meanwhile improved
optimization strategies are used. We applied the model to
SODA10M, an autonomous driving dataset released by Huawei,
and finally attained a classification accuracy of 95.3% and a
detection mAP of 91.9%, both achieving state-of-the-art.

Keywords—Autonomous Driving, Object Detection, Swin
Transformer, Cascade RoI Head

I. INTRODUCTION

In the field of deep learning, especially computer vision,
convolutional neural networks have dominated various tasks
for many years, covering image recognition, object detection,
semantic segmentation, instance segmentation, etc. The
convolutional neural network applied to the field of computer
vision was proposed by Yann LeCun in the 1980s and
was successfully applied to the task of handwritten digit
recognition [4]. In the 21st century, the ImageNet Large
Scale Visual Recognition Challenge initiated by Feifei Li
and others set off another wave of artificial intelligence
algorithms. Starting from AlexNet [2], the deep learning
model based on convolutional neural network has been
used as a powerful target for solutions to vision problems,
developed rapidly and widely. The backbone networks that
emerged later include: VGG [3] with more model parameters,
GoogLeNet [5] with Inception structure, and ResNet [6] with
more network layers. In addition, object detection is also one
of the most important tasks in the field of computer vision.
There are also many excellent works in this field, including
SSD [7] and YOLO [8] which are one-stage algoithms, and
Faster R-CNN [9], SPPNET [10], etc. which are two-stage.

However, recently, the classic model Transformer [17],
which should belong to the field of natural language
processing, has been introduced into the field of computer
vision and has gained huge success, including in the area of
image classification [11] and joint vision-language modeling
[12]. One of the most successful models at present is the
Swin Transformer [1], in which sliding window technology is
mainly used to limit the complexity of self-attention and at the
same time supports cross-window connections, successfully
allowing researchers to see that the transformer can be used
in vision field and achieve immense success. Besides, various
models with the Swin Transformer as their backbone have
also made breakthroughs in different vision tasks [22]–[24].

In this paper, we propose a more innovative method
for image classification and object detection on the dataset
SODA10M [13]. For the classification problem, we use an
improved Swin Transformer to classify the period of the day
in which the image scene is located. For the object detection
problem, we aim at the scale problem from langauge to vision
field, that is, tokens are of a fixed scale but vision applications
like object detection are not, combine the two models of
Swin Transformer and Cascade R-CNN [14] with appropriate
modification, and successfully achieve high performance.

II. SODA10M DATASET

A. Description

SODA10M is a new large-scale 2D dataset released by
HUAWEI Noah’s Ark Lab in 2021, which includes 10M
images without annotations and 20k images with exact
bounding boxes belonging to 6 object categories. This
dataset is the largest 2D autonomous driving dataset until
now which is ten times larger than Waymo dataset [26].
The rich diversity ensures its generalization performance
as self-supervised pre-training data set and semi-supervised
additional data in downstream autonomous driving tasks.

The task of collecting images is assigned to many ride-
hailing drivers. They are supposed to use mobile phones and
dashcams to obtain a large number of images. The visual
angle must be maintained in the middle of the image, and
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Fig. 1. Examples of SODA10M dataset

the contents of the car must not exceed 15 % of the picture.
To achieve more diversity, suppliers are required to obtain
images in various weather conditions, periods, places and
cities. Some examples of SODA10M dataset are shown in
Fig. 1.

B. Our Tasks & Data Augmentation

In this papar, our tasks are to perform classification and
object detection on images in the SODA10M dataset, where
for the classification problem, we need to distinguish the
time period in which the scene in the image is located,
including Daytime, Night and Dawn/Dusk. The objective
of this task is to allow the autonomous driving system to
correctly distinguish the current time period so as to adapt to
the current environment and adjust the brightness of the lights
automatically. For object detection task, the model needs
to predict the exact locations of cars, trucks, pedestrians,
trams, cyclists and tricycles in the form of tightly-fitting 2D
bounding boxes.

In the field of deep learning, the number of parameters of
model will be significantly increased due to the deepening
of the number of network layers. As a result, there will
be an over-fitting problem when data is not sufficient. The
over-fitting problem will make the network more focus on
memorizing the features of the training set rather than learning
general laws, which leads to a bad performance on test data.
Therefore, in order to alleviate the over-fitting problem of
our model and improve the generalization ability, we take the
following measures for data augmentation:

• Random flip
• Resize
• Random crop
An example of horizontal filp is shown in Fig. 2.

Fig. 2. Horizontal flip

III. METHOD

A. Architecture

An overview of the architecture of our model is presented
in Fig. 3. We first split RGB images of SODA10M dataset
into patches which are treated as “tokens” in transformer
model by patch partition module. Then we use a linear
embedding layer to change the dimension. Several Swin
Transformer blocks are applied on these tokens together with
Patch Merging module. Finally, we propose an architecture
with improved cascade RoI heads to help performing object
detection.

Patch Partition Our model first partitions an input
image into H

K × W
K patches by a patch partition module,

when using a patch size of K ×K. Each patch is treated as
a so-called “token” often mentioned in the field of natural
language processing [17]. The patch partition example with
3× 3 patches is presented in Fig. 4.
Linear Embedding Following [11], there is a linear
embedding layer applying on the raw-valued feature which is
gained from patch partition, and this embedding layer project
patches to an arbitray dimension in preparation for passing
into the swin transformer blocks.
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Fig. 3. Model architecture

Swin Transformer Block Each stage has several Swin
Transformer blocks, and each swin transformer block
is consisted of a 2-layer MLP (Multilayer Perceptron)
with GELU [15] non-linearity in between as activation
fuction. W-MSA is multi-head self attention modules with
regular windowing configurations while SW-MSA is with
shifted windowing scheme. A layer normalization layer is
applied before each MSA module and MLP and there is a
residual connection between different modules. Specifically,
the working mechanism of self attention module is as follows:

x̂l = W -MSA(LayerNorm(xl−1) + xl−1,

xl = MLP (LayerNorm(x̂l)) + x̂l,

x̂l+1 = SW -MSA(LayerNorm(xl)) + xl,

xl+1 = MLP (LayerNorm(x̂l+1)) + x̂l+1

(1)

where x̂l and xl−1 represent the output feature maps of the
self-attention module and the multilayer perceptron module
for block l, respectively.

Fig. 4. Patch partition

In order to compute self-attention, we use the following
fomular in the Swin Transform block:

Attention(Q,K, V ) = Softmax(
QKT

√
d+ bias

)V (2)

where Q,K,V are the query, key and value matrices in the
pipeline of transformer, d is the dimension of query and bias
represents the relative position bias [1].
Patch Merging A patch merging layer is applied before
each Swin Transformer block and it concatenates the features
of each group of neighboring patches as well as applies a
linear layer on concatenated features. Patch merging is used
to reduce the number of tokens and form a stage together with
Swin Transformer block in order to produce a hierarchical
representation.

B. Improved RoI Head

In the object detection task, we know that the Faster R-CNN
has a wide range of applications as a classic model. However,
it is extremely tough to ask a single regression head which is
used in Faster R-CNN to perform consistently at every quality
level. Therefore, we can decompose the difficult regression
task into a series of simpler procedures, which is also in line
with the idea of transformer. In order to apply swin transformer
to task of object detection, we combine Cascade R-CNN with
it. Specifically, in the downstream task of object detection, this
paper uses the improved Swin Transformer as the backbone,
and uses the cascade RoI head for object detection bounding
box regression and object classification. In addition, different
from the regression loss used by Cascade R-CNN, we use
GIoU [16] Loss for bounding box regression optimization,
which will be discussed in the next section. Our improved
framework with cascade RoI head is presented in Fig. 5.
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Fig. 5. Our improved net framework with cascade RoI head. B means
bounding box and C is classification, P is proposals, Backbone is Swin
Transformer here.

C. Loss Function Optimization

1) classification loss: We simply adopt the cross entropy
loss as the classification loss of the model, cross entropy loss
is a good mean of measurement of the difference between two
probability distributions (p and q in the following formular)
and is easy to optimize.

CrossEntropy(p, q) = −
∑
x

p(x)log(q(x)) (3)

2) regression loss: The model proposed in this paper uses
GIoU Loss as the loss function for the regression of the bound-
ing box. After experiments, we found that its performance
is better than the loss function mentioned in the paper of
Cascade R-CNN. GIoU Loss is effectively an improvement
of IoU Loss. Compared with IoU Loss, GIoU Loss not only
focuses on the overlapping area of the two bounding boxes, but
also cares about the non-overlapping areas, which can better
reflect the difference between the predicted bounding box and
ground truth. GIoULoss = 1 − GIoU and the calculation
process of GIoU is as follows.

Algorithm 1 Generalized Intersection over Union
Input: Two arbitrary convex shapes: A,B ⊆ S ∈ Rn

Output: GIoU
1: For A and B, find the smallest enclosing convex object

C, where C ⊆ S ∈ Rn

2: IoU = |A∩B|
|A∪B|

3: GIoU = IoU − |C\(A∪B)|
|C|

IV. EXPERIMENTS

A. Exploratory Data Analysis

We train and test the proposed model using the SODA10M
dataset released by Huawei, which is designed to promote

the development of industrial autonomous driving applications
with 10k precisely annotated images provided. There are 5k
in training set and 5k in validation set. In our experiments,
we directly use the training set for training and test the model
on the validation set. The distribution of the labeled boxes of
the training data is shown in Fig. 6. It is obvious that there
are very few samples of the “tricycle” category, meaning that
there is a data imbalance problem, which will definitely affect
the ability of the model. Thus we take appropriate resampling
strategy on the “tricycle” category, and it is verified that the
model mAP increases by about 2.6% after resampling. Learned
from Fig. 6(b), the distribution of bbox positions is relatively
uniform. Most of the objects are located in the middle of the
picture. As can be seen from Fig. 6(c), there are a large number
of small bounding boxes, indicating that there are many “far
away” vehicles and even overlapping vehicles and pedestrians
need to be detected in the task, which makes our task quite
challenging.

(a) (b) (c)

Fig. 6. Distribution of SODA10M training set. (a) Index 0 ∼ 5 represent
categories “pedestrain”, “cyclist”, “car”, “truck”, “tram” and “tricycle”, re-
spectively. (b) “x” and “y” represent the normalized center position of the
bbox. (c) “width” and “height” represent the normalized width and height of
the bounding box, respectively.

B. Evaluation Metrics

For the evaluation metrics of object detection, we just follow
Faster-RCNN [9] to utilize the region-based mean average
precision (AP) at IoU threshold 0.5 (AP50) and 0.75 (AP75).
As for the period classification, we adopt top-1 accuarcy as
our criterion.

C. Model Settings

We compared models of different complexity and give the
best model on SODA10M based on experimental results. The
initial embedding dimension is set to 128 and 4 swin trans-
former blocks are stacked 2, 2, 16 and 2 times respectively.
The number of heads in MSA module is 4, 8, 16 and 32. For
the detection head, a total of 3 cascade RoI heads are used.
The weights of loss are 1, 0.5 and 0.25 respectively. Moreover,
we adopt GIoU Loss instead of smooth L1 Loss in bounding
box regression.

D. Implementation Details & Result Analysis

Our network is implemented based on PyTorch. We com-
plete all the experiments on Nvidia GeForce RTX 2080 Ti.
Training for the proposed network takes about 9 hours.

For classification task, we apply Swin Transformer as fea-
ture exactor with MLP head. The loss function we adopt is
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TABLE I
COMPARISON BETWEEN DIFFERENT METHODS INCLUDING SOTA ON SODA10M VALIDATION SET.

Methods pedestrain cyclist car truck tram tricycle mAP50

RetinaNet [18] 58.92 61.83 66.14 72.43 62.92 38.82 60.2
YOLOv5 [19] 85.37 84.29 90.12 91.36 86.63 68.32 84.3
YOLOR [20] 83.92 87.48 92.36 91.85 87.32 64.92 84.6
YOLOX [21] 85.37 89.65 93.12 91.23 89.36 66.12 85.8

Ours 89.45 95.49 96.84 94.37 95.77 79.43 91.9

multi-class cross entropy in (3). And the optimization method
is SGD. The weight decay and momentum are set to 10−4

and 0.9, respectively. The weights we use are pretrained
from ImageNet-1K. After 10 epochs of training, the model
converges rapidly. The top-1 accuracy achieves 95.3% in
the end. It can be observed that using swin transformer as
backbone, the convergence speed and model accuracy both
are excellent on the classfication task.

As for the detection task, we apply the AdamW [25]
optimization algorithm with learning rate policy of linear
warmup and step decay. The learning rate will increase to
10−4 in 500 iterations and then divided by 10 after the 6th
and the 12th epoch. For the best results, we ultimately decline
the learning rate by 10 times in the last epoch. The weight
decay is set to 0.05 to alleviate overfitting. On top of that, we
adopt multi-scale training for better performance. The training
of models based on CNN (i.e. YOLO and RetinaNet) follows
the default settings. The training loss and validation mAP are
shown in Fig. 7.

(a) Training Loss (b) Validation mAP

Fig. 7. The training loss(a) and the validation mAP(b). (a) s0 ∼ s2 represents
the three detection RoI heads. (b) mAP50 (follows the COCO evalutation
metrics) achieves a high level on validation set.

As shown in table I, our model outperforms most popular
one-stage object detection methods. The mAP of validation
set reaches 91.9%. Our model performs particularly well in
the recognition of “car” and “cyclist” (95.49% and 96.84%,
respectively), especially cyclist category, which is significantly
better than YOLO series. This may be due to the self-attention
mechanism in Swin Transformer, which can quickly lock the
region with obvious features in the image. The addition of
the shifted window module ensures that there is continuity
between the different windows, making it more helpful for
big targets that can easily be shelled. The main constraint on
the model performance is “tricycle” (only 79.43%AP). But

even so, our method significantly outperforms RetinaNet by
40.61%. Fig. 8 and Fig. 9 show some examples of object
detection results. They indicate that our method has a good
performance on traffic detection regardless of the period (i.e.
daytime, dawn/dusk or nignt). Also there are still some false
detections in results which mainly contains two kinds of error:
i) identify several pumps besides streets as pedestrains, ii)
the recognition accuracy of overlapping vehicles in the long-
sighted distance is relatively low.

Fig. 8. The object detection results with confidence scores. Red is predictions
while blue is the ground-truth.

V. CONCLUSION

In this paper, an end-to-end classifcation and object de-
tection method based on Swin Transformer with improved
cascade RoI head is proposed and is applied to autonomous
driving dataset. Our model focuses more on the scale problem
from language to vision field in traditional Transformer model
through self-attention and shifted window scheme, and applied
cascade RoI head with different weigthts to decompose the
bounding box regression task into a sequence of smaller steps,
which is also in line with the idea of Transformer as a
sequence model. We also improve the optimization method by
modifying the loss function and training strategy. Our model
performs both classification and object detection tasks in
SODA10M and achieves state-of-the-art, which attains 95.3%
(top-1 accuracy) and 91.9% (mAP50), respectively. We believe
that our model can also be used and performs well in other
fields besides traffic image recognition.
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Fig. 9. Examples of object detection results on SODA10M validation set using the proposed model. Red is predictions while blue is the ground-truth. A
score threshold of 0.5 is used to display these images.
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